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Urbanization and the by-product pollutants of anthropogenic

activity pose unique threats to arthropods by altering their

sensory environments. Sounds generated by human activities,

like construction and road traffic, can oversaturate or interfere

with biotic acoustic cues that regulate important ecological

processes, such as trophic interactions and the coordination of

mating. Here, we review recent work exploring how

anthropogenic noise impacts inter-intra-specific interactions in

insects and arachnids. We outline empirical frameworks for

future research that integrate three mechanisms by which

anthropogenic noise alters behavior through interference with

acoustic cues: masking, distraction, and misleading.

Additionally, we emphasize the need for experimental designs

that more accurately replicate natural soundscapes. We

encourage future investigations on the effects of

developmental exposure to noise pollution and the impacts of

multiple interacting sensory pollutants on insect and arachnid

behavior.
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Introduction
The by-products of urban expansion have diverse and

pervasive effects on ecological interactions and evolution-

ary trajectories [1�,2�,3�]. One such by-product is anthro-

pogenic sound — for example, noise produced by con-

struction, transportation, and energy-generating
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infrastructure (Figure 1a). By altering local soundscapes

[2�,4��,5��,6��,7], anthropogenic noise can impart physio-

logical, behavioral, survival, and reproductive costs to

insects and arachnids [4��,8��,9�,10,11]. Given the crucial

role that sound plays in shaping arthropod behavior and

physiology (including regulating general activity patterns,

predator–prey interactions, and mating interactions),

anthropogenic noise is likely to alter the nature of arthro-

pod interactions through changes to individual behavior,

and can consequently alter the outcomes of ecological

interactions [3�,4��,12�,13,14�,15��,16].

In this review, we synthesize recent work exploring how

anthropogenic noise impacts insect and arachnid behav-

ior. We review how anthropogenic noise can alter the

detection and processing of acoustic cues and signals in

ways that change the nature of inter-specific and intra-

specific interactions. We also cover how anthropogenic

noise alters habitat use and activity patterns in ways that

modify the likelihood of these interactions occurring. We

discuss the resulting consequences for predator–prey

interactions and the coordination of mating, with a focus

on research published over the last two years. Our review

includes suggestions for standardizing and improving the

accuracy of field-based sound recordings and acoustic

playback studies. Lastly, we outline avenues of future

research including work to examine how noise pollution

during development influences adult behavior, and

expanding research to include testing the effects of

multiple sensory pollutants on multisensorial taxa.

How anthropogenic noise affects insect and
arachnid behavior
Noise pollution affects cue detection and processing

Noise pollution often produces low frequency (i.e. low

pitch), high amplitude (i.e. loud) sounds that overlap with

biotic cues and can travel great distances through air and

substrate media (Figure 1a) [3�,4��,5��,6��,8��,9�]. For

instance, transportation systems produce noise with fre-

quency ranges of 10�10 000 Hz (and sometimes up to 50

000 Hz), with particularly high amplitudes at frequencies

that arthropods rely on (typically �1000 Hz; Figure 1a)

[4��]. As a result, anthropogenic noise can hinder the

ability of arthropods to detect and process cues and

signals that are used to make behavioral decisions during

inter-specific and intra-specific interactions

[4��,7,10,12�,17,18�,19,20�]. Following years of insightful
www.sciencedirect.com
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Figure 1

(a) (b)
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(a) Noise pollution alters the soundscapes of terrestrial and marine environments [3�,6��] and covers a broad range of amplitudes across

spatiotemporal scales (�70–150 dBSPL; �63K–200M, with particularly high amplitudes at the low frequencies that arthropods rely on (�1000 Hz)

[4��]. The frequency composition and amplitude ranges of anthropogenic noise in the environment (color intensity: red higher amplitude levels).

Recordings were done in an urban park in Saint Louis, MO at a 100 meters from the road. Airborne recordings made at nighttime with an Audio-

Technica AT2022 Stereo Condenser Microphone and a SONY PM10 hand recorder. Substrate-borne recording collected from leaf-litter substrate

during rush hour with a Polytech PDV100 laser vibrometer. (b) Three main mechanisms through which acoustic noise can impact the accuracy of

cue and signal detection and processing: masking, distraction, and misleading [5��,21��]. Masking from noise pollution reduces the ability and

accuracy of parasitoids to detect their host cues. Distraction alters how predators processes the target cue/signal by shifting their attention to the

external stimuli and decrease foraging success on cryptic prey (e.g. noise pollution) [22�]. Noise pollution effect can mislead cue processing when

interpreted as a natural cue and unexposed individuals may associate the external stimulus with a potential predator and alter the signaling effort,

while experienced individuals may benefit [14�].
findings, researchers have outlined three main mecha-

nisms through which acoustic noise, and other anthropo-

genic by-products, can impact the accuracy of cue and

signal detection and processing: masking, distraction, and

misleading (Figure 1b) [5��,21��]. The isolated and com-

bined effects of these mechanisms can alter the nature of

the interactions and the outcomes of predator-prey inter-

actions and mating coordination [10,18�,22�,23��].

Masking occurs when the noise source shares similar

sound energetic properties (e.g. frequency ranges and/

or amplitudes) and occurs simultaneously with biotic

sounds [5��,7,24]. This overlap impairs the ability for

individuals to successfully detect and respond to biologi-

cal cues and signals (Figure 1b) [20�,21��,22�,25�]. Mask-

ing has been well-studied in birds, frogs and bats under

predation and foraging contexts [22�,26], and in mate
www.sciencedirect.com 
signaling and detection contexts [7,27–31]. Despite the

diverse and complex multi-trophic interactions that occur

within arthropod food webs, studies on the effects of

noise pollution in insects and arachnids have been largely

limited to orthopterans, and to the effects of masking

noise on the detection and processing of mate signaling

(Figure 1b) [32�,33–35,36�], but see [13,16,37��,38�].

Distraction involves sudden shifts in an individual’s

attention from a target source to the noise source (e.g.

a shift from a biotic cue/signal to a sensory pollutant), and

alters how a receiver processes the target cue/signal

[3�,5��,7,10,19,21��,39�]. For prey, this may alter their

ability to properly perceive threats [33], and for predators,

distraction may reduce foraging efficiency (Figure 1b)

[13,22�]. Although distraction by sensory pollutants may

be an important driver of how insects and arachnids
Current Opinion in Insect Science 2021, 47:142–153
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process stimuli, we are unaware of any recent empirical

evidence directly testing the effects of this phenomenon

in insects and arachnids [21��].

Misleading occurs when an anthropogenic stimulus is

detected as a natural cue and triggers a (typically) mal-

adaptive response [21��,40]. For example, individuals

typically unexposed to anthropogenic noise may associate

acoustic products of human activity (e.g. truck sounds)

with potential predatory threats and alter their behavior

unfavorably (see Noise pollution alters habitat use and
activity patterns) (Figure 1b) [21��]. Given that behavior

is also influenced by natural abiotic cues (e.g. wind, rain,

and even geology [15��,21��,38�,41�,42]), we need more

work addressing maladaptive responses to stressors like

noise pollution that may mimic those cues [21��,23��,25�].

Empirically testing and quantifying how inter-specific

and intra-specific interactions change in response to

anthropogenic noise can sometimes be limited by the

experimental complexity of standardizing, isolating, and

combining multiple sensory interferences. However,

researchers are beginning to develop methods that will

allow us to better address masking, distraction, and mis-

leading in an integrated way (see [5��,8��,23��,24,38�,43])
to determine the extent to which noise pollution

impacts ecological and evolutionary processes

[1�,3�,4��,5��,11,12�,18�,44��].

Noise pollution alters habitat use and activity patterns

In addition to sharing acoustic space with other species

that use similar signaling properties, insects and arachnids

may also compete with anthropogenic by-products [45].

For instance, the peak activity of crepuscular species can

overlap with the hours of peak traffic and human activity

(depending on seasonality and geographical region)

(Figure 2a) [3�]. To avoid overlap with anthropogenic

noise, animals may exhibit shifts in spatiotemporal activ-

ity patterns, habitat use, and navigation [8��]. For exam-

ple, individuals might alter their circadian rhythms to

avoid the sensory interference from anthropogenic activ-

ity patterns (Figure 2a) [4��,5��,15��].

A rather astonishing animal response to noise is the

shifting of microhabitat use to occupy substrates better

suited for increasing performance under noisy conditions.

This idea remains understudied across a wide range of

taxa. However, there is evidence that arachnids and

predatory insects can learn to eavesdrop on vibrational

cues (e.g. spiders readily exploit the vibrational cues

produced by their prey when foraging [46�]), and may

exploit particular substrata to increase prey cue detection

and capture [4��,43]. Any changes in spatiotemporal hab-

itat use in response to anthropogenic noise can also alter

which species or individuals overlap in niche space and

interact with one another [4��]. For example, crickets

living near roads and construction zones benefitted from
Current Opinion in Insect Science 2021, 47:142–153 
reduced signaling competition with conspecifics and

reduced predation relative to crickets living farther from

the road (Figure 2b) [14�,36�]. At the same time, birds that

use acoustic cues to detect arthropod prey shift away from

noisy roadsides and may reduce the abundance and

species richness of grasshoppers at sites farther from roads

(Figure 2b) [8��]. Thus, shifts in spatiotemporal niches—

by insect and arachnids or their predators—may ulti-

mately alter patterns of species richness and abundance

[8��,10,11,19,47]. Addressing the trade-offs between the

costs and benefits of remaining at noisy sites versus

shifting away to quieter areas occupied by predators that

also avoid noisy conditions would provide a better under-

standing of community-level responses and species spa-

tial distribution driven by noise pollution [10,21��].

Implications for inter-specific interactions in
predator-prey and parasitoid-host contexts
How noise pollution alters the nature of inter-specific

interactions

Anthropogenic noise affects inter-specific interactions

that have large effects on community dynamics and

ecosystem functions [2�,5��,7,8��,10,11,23��], such as

predator-prey and parasitoid-host interactions

[8��,13,22�,38�]. In fact, evidence suggests that noise

pollution can trigger trophic cascades throughout an

entire community by modifying both predator and prey

behaviors that determine the outcomes of predator-prey

interactions [8��,9�,16,38�]. Many insect and arachnid

species rely on acoustic cues (both airborne and sub-

strate-borne) to detect, avoid, and deter predators and

parasitoids, as well as to identify potential prey or hosts

[4��,13,17,19,22�,43,48�]. By interfering with cue detec-

tion and processing, anthropogenic noise can greatly

reduce the ability for, and accuracy with which, acousti-

cally orienting predators and parasitoids respond to prey

and host acoustic cues, benefitting prey (Figure 1b)

[4��,9�,13,16,19,22�]. For example, adaptation of frogs

(midge hosts) to urban areas may ultimately allow the

frogs to avoid being parasitized by midges, which are

sensitive to noise pollution [19]. However, noise pollution

can similarly hinder the ability of prey and hosts to detect

and avoid predators and parasitoids (Figure 1b) [46�]; this

remains untested for the majority of insect and arachnid

taxa. One interesting avenue to pursue is how noise

pollution and predation pressure can impact the effi-

ciency of anti-predator mechanisms and potentially trig-

ger the evolution of diverse antipredator strategies, as

seen in non-insect arthropods (e.g. shore crabs (Figure 2c)

[49].

How noise pollution alters the likelihood of outcomes

We previously discussed how anthropogenic noise can

alter habitat use and activity patterns, and consequently

alter which organisms interact in a shared acoustic space

(see Noise pollution alters habitat use and activity patterns),
such individual changes in movement patterns are likely
www.sciencedirect.com
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Figure 2

(a) (b)

(c) (d)
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Noise pollution alters habitat use and activity patterns with implications for predator-prey and mating interactions. Examples include: (a) circadian

rhythms may change to avoid sensory interference from anthropogenic activity [15��], (b) shifts in spatial distribution of predators away from noisy

roadsides can decrease arthropod abundance and species richness at sites further from roads, leading to differential preferences for call

characteristics under noise levels in road edges and urban environments [8��,12�,14�,34,36�,59], (c) ship noise during development can reduce

anti-predator responses (e.g. camouflage), increasing predation likelihood [49], and (d) seismic disruption from noise pollution impacts parental

care and brood size of ground dwelling arthropods sensitive to low-frequency vibrations [37��].
Artwork by Leticia Classen Rodriguez
to change encounter rates between predators and prey, or

parasitoids and their hosts [4��,8��]. Noise pollution can

alter functional responses for predators and prey. For

example, noise can reduce predators’ appetites through

physiological effects that can trigger stress-induced hor-

monal changes [23��] and alter foraging activity

[10,21��,22�,23��,25�]. Two illustrations of changes in

the likelihood/outcome of predator-prey interactions in
www.sciencedirect.com 
response to anthropogenice noise include reduced forag-

ing of birds on cryptic moth prey (Figure 1b) [22�] and of

insectivorous bats on their arthropod prey [50,51]. Future

research will benefit from testing whether release from

predation pressure outweighs the costs of remaining in

noisy habitats where predators are less abundant (see

Effects of noise exposure during development). Understanding

the various mechanisms through which anthropogenic
Current Opinion in Insect Science 2021, 47:142–153
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noise affects predator-prey and parasitoid-host interac-

tions will allow researchers to better predict the extent of

the effects of noise pollution on local populations and

communities, and the consequences for local food webs

[16].

Implications for intra-specific interactions in
mating contexts
How noise pollution alters the nature of intra-specific

interactions

Anthropogenic noise affects intra-specific interactions

associated with mating — including courtship and mate

location — by altering the signaling environment and

signal perception by receivers [52�]. As a result, noise

pollution can have dramatic impacts on lifetime repro-

ductive success [18�]. The coordination of mating

depends broadly on acoustic communication in many

arthropods (e.g. Refs. [12�,17,20�,21��,25�]. Seven orders

of insects detect and use far-field airborne sound

(Figure 1) [4��,38�] and over 90% of acoustically commu-

nicating insectsusesubstrate-borne sound ora combination

of substrate and airborne sounds to communicate species

identity, location, quality, and fighting ability (amongst

other things) (Figure 1b) [4��,12�,20�,37��,41�,53]. Evi-

dence for effects of noise on arthropod reproductive

behavior comes primarily from work with orthopterans,

and has collectively demonstrated that noise pollution

affects signals, signaling behavior, courtship, mate location,

and even investment in reproductive organs (Figure 3a)

[10,14�,15��,18�,32�,33–35,41�,54].

One particularly common response to anthropogenic

noise is changes in animal signals [10,12�,21��]. Insects

and arachnids, however, may be less able to alter signals in

response to anthropogenic noise than vertebrates. Many

insects and arachnids produce sound using stridulation,

which involves rubbing hardened, ridged body structures

together (e.g. a file and scraper mechanism) [20�]. The

frequency (pitch) of the sound produced depends on the

shape of the structural traits rubbed together and the

geometry of resonators that project the sound produced.

Thus, changes in the frequency components of signals

may be far more restricted and less plastic in arthropods

than they are in vertebrates [4��,34]. However, grass-

hoppers from noisy roadside habitats and cicadas living

in more metropolitan areas produce calls with elevated

frequency components, suggesting some long-term

effects of living in noisy habitats on the spectral compo-

nents of calls are possible, similar to findings in vertebrate

taxa [36�,55,56]. Additionally, insects and arachnids can

readily modify temporal components of calls and signal-

ing behavior in response to noise pollution (also seen in

avians), and do so in both non-adaptive and seemingly

adaptive ways [20�,21��]. For instance, under anthropo-

genic noise, male tree crickets (Oecanthus spp.) shortened

their calls and reduced signaling effort, while bladder

grasshoppers (Bullacris unicolor) called less and increased
Current Opinion in Insect Science 2021, 47:142–153 
the intervals between calls [15��,36�,54,57]. Reduced

signaling effort likely decreases mate attraction and could

harm fitness at noisy sites. Recent avian research suggests

that anthropogenic sound may also affect territory

defense signals and behavior (intrasexual competition)

[14�,30], but to our knowledge, it has yet to be tested if

arthropod competition is similarly affected.

Other documented signaling responses to anthropogenic

noise appear to be adaptive [20�]. Bladder grasshoppers,

for instance, call later in the night at relatively noisier

sites, which may allow them to take advantage of the

relatively lower noise levels at those times (Figure 2a)

[15��]. Similarly, male crickets living on habitat edges

decreased chirp rates in response to passing cars, but

males closer to the road decreased their chirp rate less

than those living farther from the road [14�]. Thus, regular

exposure to traffic sounds may decrease animals’ sensi-

tivity to this common anthropogenic disturbance

(Figure 2b) [14�]. Additionally, while literature on the

impacts of noise on insects that use substrate-borne

communication is not as well developed as that on air-

borne acoustic signals (but see Refs. [4��,21��,58�], recent

work in neotropical katydids suggests that even wind-

induced environmental noise can modify the diel distri-

bution (daily patterns) of signaling and frequency of

tremulations produced [41�]. Therefore, it stands to rea-

son that katydids and other insects and arachnids might

exhibit similar types of responses to anthropogenic noise

as well.

How noise pollution alters the likelihood of mating

outcomes

Anthropogenic noise can negatively affect the ability for

receivers to locate potential mates, much as it can reduce

the detection of predators and prey. Orthopteran species

have shown an array of responses to varied noise condi-

tions. In the field cricket Gryllus bimaculatus, for instance,

mate searching females were less likely to approach male

calls while exposed to traffic noise [33] (Figure 1b). In

other studies, however, receivers were able to respond

just as quickly to male signals in the presence of masking

traffic noise as they were in its absence (Figure 2b)

[35,36�]. After locating potential mates, exposure to traffic

noise may also change the process and outcome of mating

decisions. For example, female field crickets spent less

time attending to (and presumably assessing) male calls

before approaching them closely under anthropogenic

noise conditions [33]. For the grasshopper Chorthippus
biguttulus and the cricket G. bimaculatus, different noise

conditions led to different preferences for call character-

istics, suggesting that sexual selection may proceed dif-

ferently in urban environments [34,59].

Lastly, substrate-borne interference generated by anthro-

pogenic activity appears to impact reproductive success

by disrupting seismic communication important for
www.sciencedirect.com
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Figure 3

(a) (b)
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Future directions for research on the impacts of noise pollution on arthropods include (a) considering developmental experience (e.g. potential

impacts of developing in noise on reproductive organs at adulthood) [32�] and (b) multiple sensory integration and pollutants in urban

environments (e.g. light pollution and noise pollution) [2�,5��,10,21��,44��,63–65].
ground dwelling arthropods (e.g. in the presence of seis-

mic noise burying beetles, which stridulate during paren-

tal care, produced smaller broods with lower mass

(Figure 2d) [37��]). Again, however, research on sub-

strate-borne vibrations lags behind that of far-field air-

borne sound in this context. This is an exciting area for

future research.

Challenges in experimental design
Potential challenges for replicating methodological

approaches

For new researchers entering the field, it is important to

determine (i) what acoustic components of noise pollu-

tion to address, and (ii) what equipment is necessary to

measure and calibrate specific acoustic components dur-

ing field recordings and acoustic playbacks. Furthermore,

given that soundscape patterns occur at multiple spatio-

temporal scales and arthropods display behavioral varia-

tion depending on their sensory environment [4��,11], (iii)

establishing the desired spatiotemporal resolution for

soundscape recordings and behavioral assessments will

be important for sampling efforts and replication, [4��

,5��,10]. However, (iv) to overcome these challenges it is
www.sciencedirect.com 
important to also be thoughtful about the budgets

required to fully rectify these challenges.

(i) What specific acoustic components of noise pollution

to study, and (ii) What equipment is needed to accurately

record and broadcast sound

The physics of sound recording and playbacks demands

specialized equipment and routine calibration. Thus,

researchers need to consider the reproducibility of record-

ing in the environment, calibraiton, and playbacks in

experimental design for noise-exposure experiments.

However, these types of details are sometimes overlooked

and ambiguous when provided in descriptions of methods.

We provide suggestions for methods and reporting here.

Behavioral ecologists would benefit from establishing stan-

dard methods for reporting sound value units of arthropod

responses under validated calibration protocols and with

properly calibrated equipment to increase the relevance of

behavioral responses and acoustic analysis to environmen-

tal conditions (e.g. Refs. [4��,10,23��,60�]), For example,

proper calibration requires using the same devices used

for recording sound or the correct conversion between

types of measurements (e.g. accelerometers measure

particle acceleration and laser vibrometers measure
Current Opinion in Insect Science 2021, 47:142–153
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the particle velocity) [60�]. It also requires selecting the

appropriate distance between speakers and animal sub-

jects [14�] and calibrating amplitudes and frequency

spectra to better replicate field conditions [60�]. Engi-

neering challenges arise in attempts to replicate airborne

sounds for playback experiments: researchers often lose

power in the lower frequency ranges, which are biologi-

cally relevant to most arthropods. In an extreme exam-

ple, normal speakers are not able to reproduce frequen-

cies lower than 60 Hz, and even high-quality subwoofers

can only replicate frequencies as low as 30 Hz, thus

poetntially excluding biologically relevant frequency

components of anthropogenic noise. The required mod-

ifications to overcome this shortcoming unfortunately

may require additional engineering experience and addi-

tional budgetary investment [60�]. A quick solution to

some of these challenges is to always account for the

devices’ manufacturing specifications throughout the

recording, calibration, and playback process (e.g. micro-

phone pre-amplifier, analog and digital filtering, maxi-

mum amplitude, frequency ranges, and so on). Knowing

each device’s specifications is useful when determining

what frequency ranges and amplitude levels to study,

how devices process sound (e.g. particle velocity/voltage,

decibels in sound pressure, etc.), and what devices will

be able to record and replicate those ranges and levels

without distorting the sound (‘clipping’) or damaging the

device.

Another common challenge for acoustic playback studies

is the quantification and control of substrate-borne stimuli

produced by building vibrations—which can interfere

with experiments when experimental set-ups are not

properly isolated—and vibrations transduced from the

airborne playback to the substrate where the animals

are being tested [16]. The effects of the substrate-borne

components of noise pollution are vastly understudied,

mainly due to the budget limitations inherent in record-

ing, calibrating, and replicating seismic conditions accu-

rately. However, many insects and arachnids use sub-

strate-borne vibrations to detect cues, and we are thus

likely to fall short of a complete understanding of how

noise pollution alters behavior and trophic interactions by

underestimating the effects of substrate-borne noise [16].

(iii) Establishing the desired spatiotemporal resolution

for soundscape recordings and behavioral assessments

We often overlook the complexity of assessing population

and community level responses to noise pollution. We

know soundscape patterns occur at varying spatiotempo-

ral scales and that arthropods display behavioral variation

depending on their sensory environment (Sensory Drive).

It is important to keep in mind the resolution and scale of

our studies to match those relevant to the animals for

sampling and replicating efforts, and to accurately draw

conclusions [4��,5��,10,11].
Current Opinion in Insect Science 2021, 47:142–153 
(iv) Reducing budgets needed for noise pollution

research

Conducting acoustic research is not cheap, and for many

researchers this is the main barrier limiting research,

specifically when designing studies across large spatio-

temporal scales [61��]. While there is a high variation in

the type and quality of sound equipment, much of it is

inaccessible for new researchers in the field (e.g. graduate

students and underrepresented researchers). In general,

we advocate for research to develop techniques that

reduce the costs associated with recording and playback

protocol for noise pollution studies. We encourage

researchers with available equipment and funding oppor-

tunities to continue validating the quality of sampling and

calibration of low-cost open-source solutions (e.g. Audio-

Moth recorders and portable oscilloscopes using Ardui-

nos, respectively) in relation to the performance of more

expensive equipment as a means to standardize accessi-

ble acoustic monitoring for researchers with limited fund-

ing and facilitate monitoring efforts for conservation goals

(e.g. Refs. [60�,61��]).

Future directions
To push forward our understanding of the mechanisms

through which anthropogenic noise affects animal

behavior and ecological interactions, we must first

establish rigorous standards to guarantee the quality

and repeatability of findings for basic research and

conservation management. We have highlighted some

recommendations for standardizing field recordings,

calibrating acoustic playbacks, and establishing stan-

dards regarding the reporting of parameters (see Chal-
lenges in Experimental Design) [23��]. We also advocate

for controlled laboratory experiments paired with field

enclosure studies and community monitoring to cap-

ture the mechanisms and full effects of anthropogenic

noise on predator-prey and mating interactions

(e.g. Ref. [8��]).

In addition to methodological advances mentioned

above, we highlight two avenues of future research

to pursue in light of the importance of the sensory

environment for sensory systems (Sensory Drive

Hypothesis), and the use of multimodal signals and

cues by many insects and arachnids. First, we urge

researchers to invest in studying how anthropogenic

sound experienced during development affects adult

behavior, as exposure to noise can affect ecological and

evolutionary responses to urbanization. These types of

developmental studies are often easier to perform with

insects and arachnids compared to vertebrates due to

the efficacy of rearing many arthropods. Second, we

encourage tackling how anthropogenic sensory pollu-

tion affects taxa that sense in multiple modalities or

are exposed to noise in multiple sensory modalities in

urbanized environments.
www.sciencedirect.com
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The effects of noise exposure during development

Many of the examples we have highlighted throughout

this review demonstrate the immediate effects of the

local soundscape on animal behavior. However, prior

exposure to anthropogenic noise also appears to impact

fitness-related adult traits (Figure 3a) [36�,62��]. Learn-

ing, developmental plasticity, and parental effects may

exhibit adaptive patterns in response to previous expo-

sure to different noise conditions that prepare animals to

live and reproduce in anthropogenically disturbed envir-

onments [14�,63].

Although research in insects and arachnids to date has

rarely addressed the consequences of development under

anthropogenic noise, the few existing examples suggest

that early exposure to noise pollution can influence adult

traits (Figure 3a) [35]. One study found developmental

plasticity in signaling in response to anthropogenic noise

(grasshoppers reared under noise produced higher-fre-

quency songs as adults [57]). Another study found fairly

dramatic changes in female latency to begin mate search-

ing and to locate a male song when exposed to traffic noise

playbacks during development (Figure 1b Masking) [35].

Some limited evidence even supports the idea that expo-

sure to anthropogenic noise during development may

alter investment in reproductive organs. Male field crick-

ets exposed to chronic masking traffic noise from birth

had smaller reproductive organs at adulthood (Figure 3a)

[32�]. Here, the authors suggested that, if anthropogenic

sound masks the field cricket mating songs, noise may

alter the perception of the density of available mates and

competitors, and thus the perceived risk of sperm com-

petition. Similar effects might alter the detection of

predators, prey, and parasitoids, and thus the perceived

risk of predation or availability of food, leading to mis-

matches between the environment and fitness-related

adult traits (e.g. altered anti-predator strategies

(Figure 2d; [49])). Conducting research on multiple

arthropod groups and in many geographical regions

may provide additional insight into whether responses

across taxa and seasons are consistent, what the potential

neurological and physiological responses to developmen-

tal noise exposure are [4��,25�], and how often behavioral

patterns are correlated with the acoustic environment

during development [7].

Multiple sensory integration and pollutants in urban

environments

Most studies to date have focused on the effects on single

pollutants or environmental stressors [5��,64] despite the

common co-occurrence and covariance of multiple sen-

sory pollutants in urbanized areas (e.g. noise, light, che-

micals (Figure 3b) [5��,63]), but see [5��,18�,19,44��,65–
67]). However, insects and arachnids use multi-sensory

cues for decisions ranging from navigation [68�] to forag-

ing and mediating predator-prey interactions [46�,69,70]
and mating interactions [18�,71]. Broadly across animals,
www.sciencedirect.com 
the presence of multi-sensory cues can increase the

accuracy with which animals monitor their environments

to make adaptive decisions [44��,68�,72]. Under varying

conditions, the nature of multi-sensory cue interactions (i.

e. if the information provided via cues from different

modalities is redundant, additive, or interactive [10,71]) is

likely to shape how multi-sensory pollution impacts

behavior (Figure 3b). [65]. Redundant information across

cues/signals from different sensory modalities can make

shifts to rely more on a quieter sensory channel relatively

straightforward when some sensory pollutants vary in

their effects (e.g. Refs. [10,65]). However, when the

effects of sensory pollutants are additive, antagonistic,

non-linear or interactive, switching reliance on one sen-

sory channel to another will not be as effective [5��,65].
Increased noise in one sensory channel could also impair

perceptual processing capabilities in other channels,

potentially even more so for predators that rely on multi-

modality to eavesdrop on signaling prey [73,74]. We

encourage expanding and amplifying the foundation built

by researchers in the last two years to understand how

anthropogenic noise and other sensory interfering stimuli

(i.e. natural abiotic noise and artificial light) can impact

ecological interactions by altering behavior [5��,21��,43].
This is a field that is likely to grow rapidly in the coming

years, as the fields of behavioral ecology, signal detection

theory, and perceptual decision-making all move towards

frameworks that incorporate multiple sensory modalities

[4��,71,74] and pollutants and, as a result, research

results can be applied to more realistic scenarios

[5��,18�,44��,62��,75].

Conclusion
In the last couple of years, the majority of research on how

anthropogenic noise affects behavior, reproductive suc-

cess, and community structure has focused on vertebrate

communities with far fewer empirical studies conducted

across diverse arthropod taxa, despite the demonstrated

importance of such work [11,13,33,35]. Currently, much

of the evidence on how anthropogenic noise affects

particularly predatory–prey interactions derives from

assays focusing on changes in niche use or abundance

of interacting species, rather than from experiments that

directly test how noise affects the likelihood and nature of

interactions to generate observed patterns (see Refs.

[4��,7,9�,10,11,20�,21��]). The examples we have outlined

in this review suggest a proliferous field that will benefit

from direct tests of the mechanisms through which

anthropogenic pollution can alter predator-prey and mat-

ing interactions. This venture should consider sensory

ecology, movement ecology, and quantification of arthro-

pod responses to noise across both ecological and evolu-

tionary time scales. Here, we also call for the establish-

ment of field standards that take into careful

consideration the particular challenges replicating noise

experienced by animals in the field [5��] and the associ-

ated budgetary constraints faced by many researchers.
Current Opinion in Insect Science 2021, 47:142–153
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Despite being in early stages, the current body of work

promises creative and collaborative avenues of research

addressing the important goal of a more wholistic

approach to monitoring the impacts of anthropogenic

noise on arthropod interactions. Furthermore, this

research will allow researchers to better hypothesize

ecological and evolutionary consequences triggered by

our rapidly changing world.
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